

PRE-ANALYTICAL VARIABLES

MRS. LEENA S FERNANDES TECHNICAL OFFICER HEMATOPATHOLOGY LABORATORY TATA MEMORIAL HOSPITAL

Medical laboratory Technology (MLT)

- Medical Laboratory Technology is the science that deals with the screening, diagnosis, and treatment of various diseases with clinical laboratory tests.
- It plays significant role in the healthcare system and the decision-making of clinical doctors about their patients.
- It works hand in hand with modern medicine to provide right treatment to the patient.

Role of Medical Laboratory

TESTS	EXAMPLES
Screening – asymptomatic	HIV, HBV, HCV, Thalassaemia
Diagnostic – symptomatic	Diabetes, Cancers
Monitoring – on treatment	Cancer, Anaemia
Functioning of vital organs	Liver function test Renal function test Thyroid function test
Diagnosis-bleeding disorders	Coagulation assays
Blood cell count	Complete Blood Count (CBC)
Specialized assays- Cancer, Genetic abnormalities	Flowcytometry, Molecular, Cytogenetic testing

Therefore, laboratory services need to be accurate, precise and quick.

Laboratory testing process

Total testing process in the laboratory is a cyclical process divided into three phases:

Pre-analytical variables

• Refers to-

Any and all procedures that occur during blood collection, prior to blood analysis.

Pre-analytical errors

- Mistakes during sample collection, transport and processing before analysis.
- Errors in pre-analytical stage: 60-70%

 Analytical & post analytical variables depend on preanalytical variables

Çuhadar S. Preanalytical variables and factors that interfere with the biochemical parameters: a review. OA Biotechnology 2013 Jun 01;2(2):19

Blood collection - Phlebotomy

Phlebotomy Venipuncture Blood draw Blood collection

- Phlebos is Greek for "Vein" Tome means to "cut" Phlebotomy means to cut a vein.
- The process of making an incision in the vein is known as **phlebotomy** and the person who carries out the procedure is known as phlebotomist.
- Phlebotomists are responsible for collecting blood samples in appropriate quantity, using right technique and container and transport them to the laboratory for testing.

Primary sample collection variables

- Patients Identification
- Patient preparation
- Labeling of tubes
- Site selecting and preparation
- Proper venipuncture technique
- Tourniquet application and time
- ➢ Order of draw
- Proper mixing
- Correct specimen volume
- Proper tube handling and specimen transporting
- Sample processing

Test requisition form

Sample Requisition Form for Laboratory Processing Patient Name Patient ID Patient Birthdate Sex Source of Specimen Date Collected Time Phleb Physician Location Diagnosis

TESTS REQUESTED:

- Patient's name
- > Age/Gender
- Patient's ID number
- Name of requesting doctor
- Nature and Source of specimen

(This information must be given when requesting microbiology, cytology, fluid analysis, or other testing where analysis and reporting is site specific)

- Relevant clinical history/provisional diagnosis
- Investigations requested
- Date and time of collection
- Sign of phlebotomist

Patient Identification

- The most serious error is failure to properly identify the patient.
- Two patient identifiers must be present. Name and identification number are the most common.
- Mis-identification of the patient may lead to inappropriate testing or inaccurate result reporting.

Patient preparation

• Prior to sample collection for chemistry, certain preanalytical variables need to be considered.

For example: for glucose and cholesterol test patient need to be fasting for at least 10- 12 hours (overnight fasting) prior to venipuncture.

• Patient's posture : Specimens should be drawn with the patient seated comfortably in an appropriate chair or lying down.

Gabriel Lima-Oliveira, Patient posture for blood collection by venipuncture: recall for standardization after 28 years,

https://doi.org/10.1016/j.bjhh.2017.01.004

Labeling of tubes

Manual labeling:

- Handwritten labels and request forms leads to highest frequency of errors.
- Hand written labels arelaborious
 time consuming
 leading to potential transcription errors

Labeling of tubes

• This can be eliminated by barcode technology.

Barcode labelling

Wrong way of labelling

Right way of labelling

Labeling of tubes

- Blank tube loaded in independent drawers in front.
- Prints label
- Prepares patient kit as soon as data received from LIS/HIS.
- Wrong tube loading detector.

Advantages:

- Verifies correct labelling
- Decreased labelling errors
- Less human intervention
- Increases speed of labelling
- Cost effective

Automated Phlebotomy tube labeller

Proper venipuncture technique

Equipments required:

- PPE (Personal protective equipment)
- Disinfectants
- Tourniquet
- Needle holder
- Needles
- Butterfly needles
- Evacuated tubes
- Cotton swabs
- Band-Aid
- Sharp disposal container
- Waste disposal bags

Multi sample needles

- Needle Size / Gauge: Diameter of the needle.
 Size :16G – 25G colour coded Routine: 21/22G Children: 23G The larger the number the smaller the diameter.
- Double pointed needle. The hub screws into the needle holder. Open with a twist motion.

• Provides a simple, effective way to collect blood and reduce the possibility of accidental needle stick injury.

Multi sampler blood collection needle

safety-engineered, multisample blood collection

Evacuated tubes

Colour code guides to choose appropriate additive.

- Used to collect blood sample.
- Plastic tubes sealed with a rubber stop and contains preformed vacuum.
- Blood is drawn automatically into the tube by vacuum until the required amount is collected.
- Grants a higher safety to user & environment.

ORDER OF DRAW

- To avoid cross-contamination of additives between tubes
- To ensure accuracy of test results
- 1) Blood culture
- 2) Sodium citrate (Coagulation/ESR)
- 3) Serum tubes with or without clot activator or gels
- 4) Heparin tube with or without gel
- 5) EDTA tube

(Ethylenediaminetetraacetic acid)

6) Sodium fluoride/potassium oxalate DO NOT TRANSFER

Proper mixing

- Blood should be mixed with anticoagulant as insufficient mixing can cause clotting of sample.
- Mix blood by 8-10, end to end inversion of tubes.
- Avoid shaking of blood.

Site selection

Different veins can be selected for phlebotomy such as,

- Median Cubital vein
- Cephalic vein
- Basilic vein (avoid if possible as it is closest to the brachial artery and median nerve)

• Wrist veins (top and side only)

Sites to be avoided

Avoid the arm with:

- Extensive scarring
- Hematoma
- Skin infection
- On the same side of mastectomy
- Intravenous (IV) infusion,

(Try other arm or if blood is obtained from IV or PICC line, discard first 2ml prior to collection. Documentation to be done.)

Tourniquet application and time

- Tourniquet tied too close to vein puncture site hematoma.
- Tourniquet is tied too high (>3-4 inches above venipuncture site) veins may not become prominent
- Tourniquet left for > 1 min hemoconcentration, affecting some test results.
- Tourniquet should be released as soon as blood flow is established.

Site preparation

Prior to venipuncture-

- The site should be cleansed with 70% isopropyl alcohol, 2% tincture of iodine
- Cleansing in concentric circles.
- Allow to air dry. Do not blow the site.

Note:

Alcohol if not dried - -hemolysis. Tincture iodine -- may falsely increase levels of potassium, phosphorus or uric acid in laboratory testing.

Venipuncture

- Select appropriate needle
- Perform venipuncture
- Collect the blood in evacuated tubes.
- Release tourniquet
- Apply dry cotton swab over the needle and remove it gently, push safety shield over the needle
- Discard the needle in sharp container
- Check that bleeding has stopped
- Discard this cotton swab in yellow biohazard bag
- Apply band-aid
- Let the patient wait for 5-10mins.

Correct specimen volume

Blood samples for Coagulation assays 9part blood + 1part Sodium citrate

Blood collection: Hct > 55%

For coagulation testing:
 When the haematocrit >55%

(polycythaemia, dehydration, burns, heart or kidney problems, diarrhea, smoking, high altitudes etc.)

The blood:citrate ratio should be adjusted as follows:

 $C = (1.85X10^{-3}) (100-HCT) V$

where C is the volume of sodium citrate in ml,

V is total volume (3ml) HCT is the hematocrit in %.

Specimen handling and transporting

• Staff must be trained in the safe handling practices and decontamination of spills.

• Laboratory requisitions must be protected from contamination with specimen during transport.

• Proper transport ensures quality of sample and minimizes potential biohazards to staff handling the specimens.

Specimen handling and transporting

Some specimens should be transported without delay for testing.

Eg:

- Arterial blood gases (ABG) and Ammonia transported on ice bag analyzed within 15-30mins of blood collection.
- Coagulation assays transported at RT (20-25°C) analyzed within 2hrs of blood collecton.

Proper handling and transport of specimen

• **Temperature**: Temperature logger for maintenance and record of cold chain during transport.

ABGs, Ammonia – on ice

• Transport container:

All specimens must be placed into leak-proof, non-breakable containers and labeled in accordance with the hospital guidelines.

Sample transport

Pneumatic transport system

Sample rejection

Clotted sample

Hemolysed sample

wrong anticoagulant Mismatched sample

Sample processing

Centrifugation:

- Biochemical analysis:
- Specimens for serum or plasma chemistry testing should be centrifuged and separated within 2 hrs of collection at 3000 rpm for 10mins.
- <u>Coagulation assays:</u>
- Coagulation samples to be transported within 1hour of collection.
- Centrifuged at 2000g for 10mins to obtain Platelet-poor-plasma.

Minimizing pre-analytical errors

• Steps labs can take:

- > Phlebotomy education.
- ➤ Using appropriate technology.
- > Choosing appropriate equipments.
- > Adhering to standard guidelines.
- > Developing clear, written procedures.
- > Validating any new instrument or procedure.
- > Monitoring quality indicators in the lab.

Conclusion

Good laboratory practices

VICTORY LIES IN CAREFUL PREPARATION

